Prdm16 is required for normal palatogenesis in mice.

نویسندگان

  • Bryan C Bjork
  • Annick Turbe-Doan
  • Mary Prysak
  • Bruce J Herron
  • David R Beier
چکیده

Transcriptional cofactors are essential to the regulation of transforming growth factor beta (TGFbeta) superfamily signaling and play critical and widespread roles during embryonic development, including craniofacial development. We describe the cleft secondary palate 1 (csp1) N-ethyl-N-nitrosourea-induced mouse model of non-syndromic cleft palate (NSCP) that is caused by an intronic Prdm16 splicing mutation. Prdm16 encodes a transcriptional cofactor that regulates TGFbeta signaling, and its expression pattern is consistent with a role in palate and craniofacial development. The cleft palate (CP) appears to be the result of micrognathia and failed palate shelf elevation due to physical obstruction by the tongue, resembling human Pierre Robin sequence (PRS)-like cleft secondary palate. PRDM16 should be considered a candidate for mutation in human clefting disorders, especially NSCP and PRS-like CP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cleft Palate Is Caused by CNS Dysfunction in Gad1 and Viaat Knockout Mice

BACKGROUND Previous studies have shown that disruption of GABA signaling in mice via mutations in the Gad1, Gabrb3 or Viaat genes leads to the development of non-neural developmental defects such as cleft palate. Studies of the Gabrb3 and Gad1 mutant mice have suggested that GABA function could be required either in the central nervous system or in the palate itself for normal palatogenesis. ...

متن کامل

Prdm16 is a physiologic regulator of hematopoietic stem cells.

Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 i...

متن کامل

Controlling Thermogenesis: Understanding the Role of PRDM16 in the Development and Function of Brown Fat

The alarming rise in the incidence of obesity found throughout the world has precipitated a need to look for novel methods to increase energy expenditure to counter weight gain. Recently it was discovered that adult humans possess a substantial mass of brown adipose tissue (BAT), a tissue that consumes stored lipid to produce heat. Although the primary physiologic role for BAT is to protect mam...

متن کامل

HEMATOPOIESIS AND STEM CELLS Prdm16 is a physiologic regulator of hematopoietic stem cells

Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 i...

متن کامل

Correction: Prdm16 is crucial for progression of the multipolar phase during neural differentiation of the developing neocortex.

The precise control of neuronal migration and morphological changes during differentiation is essential for neocortical development. We hypothesized that the transition of progenitors through progressive stages of differentiation involves dynamic changes in levels of mitochondrial reactive oxygen species (mtROS), depending on cell requirements. We found that progenitors had higher levels of mtR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2010